主要功能
WinDENDRO 年輪圖象分析系統(tǒng)是一款多平臺圖象分析系統(tǒng),與掃描儀匹配,專門對盤狀的木材截面或柱狀的生長錐樣本進行樹木年輪的測量。
大型木材樣本可在不同部位多次分別成像;特殊的樹芯定位器用以放置柱狀樣本;兩種自動測定年輪的方法分別適用于不同的樹木類型;人工輔助的圖像識別校正和遺漏像素添加功能;可利用木材薄片的 X 光膠片掃描進行木材密度測定( 密度版)。此外,WinDENDRO 可自動設(shè)置裂縫與年輪角度的切線,以保證測量的精準性;另外,附加 XLSTEM 可進行植物的標準生長分析,如莖干平均半徑、直徑以及總體截面積;樹木高度、體積、樹齡等。對于所分析的年輪圖像可同時顯示如下參數(shù):年輪寬度、早材/夏材寬度、年輪最大/最小密度/平均密度、早材/夏材平均密度(高級密度版)等。
測量參數(shù)
年輪基本測量參數(shù):年輪計數(shù),年輪環(huán)寬度,早材/晚材寬度,年輪環(huán)角度(弧度)等。
年輪密度測量參數(shù):年輪平均密度,早材平均密度 ,晚材平均密度,年輪環(huán)晚材最大密度 ,年輪環(huán)早材最大密度 。
樹木圓盤測量參數(shù):圓盤面積,周長,平均直徑,形狀因子,孔隙面積,年輪技術(shù)等。
應(yīng)用領(lǐng)域
廣泛應(yīng)用于植物學(xué)、植物生理學(xué)、林學(xué)、樹木學(xué)、森林生態(tài)學(xué)等領(lǐng)域。
主要技術(shù)參數(shù)
WinDENDRO Itrax 軟件
包括密度版軟件所有功能,另增加化學(xué)物質(zhì)分析功能。注:必須配套使用 Cox 系統(tǒng)公司的 itrax 掃描儀。
選購指南:
系統(tǒng)由以下兩部分組成:
圖像撲捉系統(tǒng):經(jīng)過廠家調(diào)試的標準年輪樣本掃描設(shè)備,生長錐定位器等。
· STD4800:掃描面積 22×30 cm,投影面積 20×25 cm,分辨率 4800 DPI,可分辨最小粒子 0.005 mm
· LA2400:超大掃描面積 31×44 cm,投影面積 31×42 cm,分辨率 2400 DPI,可分辨最小粒子 0.011 mm
年輪分析軟件:基本版 /標準版 /Itrax版密度版 WinDENDRO 分析軟件。
產(chǎn)地:加拿大 Regent
參考文獻
原始數(shù)據(jù)來源:Google Scholar
Wrońska-Wa?ach D, Sobucki M, Buchwa? A, Gorczyca E, Korpak J, et al. (2016) Quantitative analysis of ring growth in spruce roots and its application towards a more precise dating. Dendrochronologia 38: 61-71.
Wood LJ, Smith DJ, Hartley ID (2016) Predicting softwood quality attributes from climate data in interior British Columbia, Canada. Forest Ecology and Management 361: 81-89.
Tumajer J, Treml V (2016) Response of floodplain pedunculate oak (Quercus robur L.) tree-ring width and vessel anatomy to climatic trends and extreme hydroclimatic events. Forest Ecology and Management 379: 185-194.
Stretch V, Gedalof Ze, Cockburn J, Pisaric MFJ (2016) Sensitivity of reconstructed fire histories to detection criteria in mixed-severity landscapes. Forest Ecology and Management 379: 61-69.
Slack AW, Zeibig-Kichas NE, Kane JM, Varner JM (2016) Contingent resistance in longleaf pine (Pinus palustris) growth and defense 10 years following smoldering fires. Forest Ecology and Management 364: 130-138.
Simon P, Lena M (2016) Radial growth response of horse chestnut (Aesculus hippocastanum L.) trees to climate in Ljubljana, Slovenia. Urban Forestry & Urban Greening 18: 110-116.
Scharnweber T, Hevia A, Buras A, van der Maaten E, Wilmking M (2016) Common trends in elements? Within- and between-tree variations of wood-chemistry measured by X-ray fluorescence — A dendrochemical study. Science of The Total Environment 566–567: 1245-1253.
Renard SM, Gauthier S, Fenton NJ, Lafleur B, Bergeron Y (2016) Prescribed burning after clearcut limits paludification in black spruce boreal forest. Forest Ecology and Management 359: 147-155.
Qian S, Yang Y, Tang CQ, Momohara A, Yi S, et al. (2016) Effective conservation measures are needed for wild Cathaya argyrophylla populations in China: Insights from the population structure and regeneration characteristics. Forest Ecology and Management 361: 358-367.
Pritzkow C, Wazny T, Heu?ner KU, S?owiński M, Bieber A, et al. (2016) Minimum winter temperature reconstruction from average earlywood vessel area of European oak (Quercus robur) in N-Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 449: 520-530.
Parobeková Z, Sedmáková D, Kucbel S, Pittner J, Jaloviar P, et al. (2016) Influence of disturbances and climate on high-mountain Norway spruce forests in the Low Tatra Mts., Slovakia. Forest Ecology and Management 380: 128-138.
Papadopoulos A (2016) Tree-ring patterns and climate response of Mediterranean fir populations in Central Greece. Dendrochronologia 40: 17-25.
Omari K, MacLean DA, Lavigne MB, Kershaw Jr JA, Adams GW (2016) Effect of local stand structure on leaf area, growth, and growth efficiency following thinning of white spruce. Forest Ecology and Management 368: 55-62.
Marchand W, DesRochers A (2016) Temporal variability of aging error and its potential effects on black spruce site productivity estimations. Forest Ecology and Management 369: 47-58.
Liang H, Lyu L, Wahab M (2016) A 382-year reconstruction of August mean minimum temperature from tree-ring maximum latewood density on the southeastern Tibetan Plateau, China. Dendrochronologia 37: 1-8.
Lee EH, Beedlow PA, Waschmann RS, Tingey DT, Wickham C, et al. (2016) Douglas-fir displays a range of growth responses to temperature, water, and Swiss needle cast in western Oregon, USA. Agricultural and Forest Meteorology 221: 176-188.
Larson ER, Rawling Iii JE (2016) Developing new sources of proxy climate data from historical structures in the Lake Michigan-Huron Basin. Journal of Great Lakes Research 42: 328-335.
Holeksa J, Zielonka T, ?ywiec M, Fleischer P (2016) Identifying the disturbance history over a large area of larch–spruce mountain forest in Central Europe. Forest Ecology and Management 361: 318-327.
Haines HA, Olley JM, Kemp J, English NB (2016) Progress in Australian dendroclimatology: Identifying growth limiting factors in four climate zones. Science of The Total Environment 572: 412-421.
Giroud G, Bégin J, Defo M, Ung C-H (2016) Ecogeographic variation in black spruce wood properties across Quebec’s boreal forest. Forest Ecology and Management 378: 131-143.
Dyderski MK, Czapiewska N, Zajdler M, Tyborski J, Jagodziński AM (2016) Functional diversity, succession, and human-mediated disturbances in raised bog vegetation. Science of The Total Environment 562: 648-657.
Ashiq MW, Anand M (2016) Spatial and temporal variability in dendroclimatic growth response of red pine (Pinus resinosa Ait.) to climate in northern Ontario, Canada. Forest Ecology and Management 372: 109-119.
Amos-Binks LJ, MacLean DA (2016) The influence of natural disturbances on developmental patterns in Acadian mixedwood forests from 1946 to 2008. Dendrochronologia 37: 9-16.
Woolley TJ, Harmon ME, O’Connell KB (2015) Inter-annual variability and spatial coherence of net primary productivity across a western Oregon Cascades landscape. Forest Ecology and Management 335: 60-70.
van der Sleen P, Groenendijk P, Zuidema PA (2015) Tree-ring δ18O in African mahogany (Entandrophragma utile) records regional precipitation and can be used for climate reconstructions. Global and Planetary Change 127: 58-66.
To?go M, Vallet P, Tuilleras V, Lebourgeois F, Rozenberg P, et al. (2015) Species mixture increases the effect of drought on tree ring density, but not on ring width, in Quercus petraea–Pinus sylvestris stands. Forest Ecology and Management 345: 73-82.
Sillett SC, Van Pelt R, Kramer RD, Carroll AL, Koch GW (2015) Biomass and growth potential of Eucalyptus regnans up to 100 m tall. Forest Ecology and Management 348: 78-91.
Sauchyn D, Vanstone J, St. Jacques J-M, Sauchyn R (2015) Dendrohydrology in Canada’s western interior and applications to water resource management. Journal of Hydrology 529, Part 2: 548-558.
Sanz-Ros AV, Müller MM, San Martín R, Diez JJ (2015) Fungal endophytic communities on twigs of fast and slow growing Scots pine (Pinus sylvestris L.) in northern Spain. Fungal Biology 119: 870-883.
Paredes-Villanueva K, López L, Brookhouse M, Cerrillo RMN (2015) Rainfall and temperature variability in Bolivia derived from the tree-ring width of Amburana cearensis (Fr. Allem.) A.C. Smith. Dendrochronologia 35: 80-86.
Ouimet R, Moore J-D (2015) Effects of fertilization and liming on tree growth, vitality and nutrient status in boreal balsam fir stands. Forest Ecology and Management 345: 39-49.
Merlin M, Perot T, Perret S, Korboulewsky N, Vallet P (2015) Effects of stand composition and tree size on resistance and resilience to drought in sessile oak and Scots pine. Forest Ecology and Management 339: 22-33.
Mayor JR, Mack MC, Schuur EAG (2015) Decoupled stoichiometric, isotopic, and fungal responses of an ectomycorrhizal black spruce forest to nitrogen and phosphorus additions. Soil Biology and Biochemistry 88: 247-256.
Martinez-Meier A, Fernández ME, Dalla-Salda G, Gyenge J, Licata J, et al. (2015) Ecophysiological basis of wood formation in ponderosa pine: Linking water flux patterns with wood microdensity variables. Forest Ecology and Management 346: 31-40.
Marcoux HM, Daniels LD, Gergel SE, Da Silva E, Gedalof Ze, et al. (2015) Differentiating mixed- and high-severity fire regimes in mixed-conifer forests of the Canadian Cordillera. Forest Ecology and Management 341: 45-58.